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Continuous group invariances of linear Jahn-Teller systems 

D R Pooler 
Department of Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 20 December 1977 

Abstract. We generalise the theory of the generation of continuous groups of irreducible 
electronic tensor operators for the rotation group to include simply reducible groups and 
the cubic double group and use it to explain why some linear Jahn-Teller systems are 
invariant under continuous groups. 

1. Introduction 

Many linear Jahn-Teller systems in cubic symmetry are invariant under the action of 
various continuous groups. One can ask the question: why is this true of some systems 
and not of others? (see table 1 for some examples). We show that if we can generate a 
rotation group in electronic space with the property that the even electronic operators 
of the Jahn-Teller system in question transform among themselves under this group 
then, provided these operators are equally coupled to corresponding vibrational 
coordinates, we can reverse the effect of the electronic rotation by another rotation in 
vibrational space and produce an invariant Hamiltonian. This answers the question. 

In order to do this we have to work out the theory of the generation of continuous 
groups by irreducible tensor operators within a single electronic manifold. We do this 

Table 1. Examples of cubic Jahn-Teller system invariances. 

System Invariant References 

r O s  E 

EO€ SO(2) Judd (1976) 
r80CoT2 so(5) Judd (1976) 
in equal 
coupling 
T O C @ T ~  so(3)  O’Brien (1971, 1976) 
in equal Judd (1974) 
coupling 
TO72 not 
T O €  not 
r 8 0 T 2  s o ( 3 )  Judd (1976) 

r8OC so (3 )  Judd (1976) 

under in this context 

Pooler and O’Brien (1977) 

Moffit and Thorson (1957) 

~ ~~ 
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by generalising the work of Judd (1963, 0 5.4) for the rotation group. We include any 
simply reducible group as well as the slightly more complicated case of the cubic 
double group (O*) in which all the basic ideas involved in a simply reducible group are 
kept intact (Harnung 1973). Thus although we always use the cubic group as an 
example the result is more general. Before proceeding with this theory we need some 
definitions and notation. 

2. Notation and definitions 

During this paper we will need to use general coupling theory for a simply reducible 
group as originally developed by Wigner (1965) extended slightly, on occasions, to 
include the cubic double group (O*) in the theory. The full theory for most groups is 
given by Butler (1975) and by Butler and Wybourne (1976). A simply reducible group 
is one with real characters and in which the product of two irreducible representations 
contains a given irreducible representation once at most. 

In all the above cases we have generalised 3-jm symbols of the form 

in which A labels the irreducible representation and i its component. The multiplicity 
label r distinguishes between different irreducible representations occuring in a pro- 
duct. This only concerns us in the case of ra@rs for O*. As TS =.f = $ of SU(2) we can 
use the L label arising from $@$ as the r. Explicitly we have 

ra O rs = A 1 O Ti O (E  O Tz)O (A  z O Ti O Tz) 

which is equivalent to 

$0; = s O p O d O f .  

Thus we have two Tl's (PT1 and fT1) and two TI'S e T z  and fT2). Note that we have a 
Tz with an even L and one with an odd L. This is entirely equivalent to the p and s 
labels of Harnung (1973). 

The symbol (2.1) is invariant under even permutations of the columns and is 
multiplied by f 1 under odd permutations. In the simply reducible case and usually for 
0" this number is (- l)hl+AzC" where (- 1)" is a defined number of modulus one for 
all the representations (Harnung's (- l)p(") for O*). In addition we have an odd and an 
even TZ in O* which means that we have to have an additional (- 1) in the case of 
(AIAzA3r) being any permutation of (TJ,Tzf). 

The usual concepts familiar for the rotation group are maintained €or our groups. 
An integer representation is defined as one equivalent to a real one and a half-integer 
representation is defined as one not equivalent to a real one although equivalent to its 
conjugate. These are the only types we have. The direct product of an integer and an 
integer or a half-integer and a half-integer irreducible representation contains only 
integer representations. Further the direct product of an integer and a half-integer 
representation only contains half-integer ones. 

In a simply reducible group we can define an even representation as one that is 
always in the symmetric part of the direct product of an integer representation with 
itself and the antisymmetric part of the square of a half-integer representation. We 
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can always choose the phases of (2.1) so that (- l)A = 1 for such representations. If the 
situation is reversed we call the representation odd and can choose phases so that 
(- l )A = -1. If a representation is neither we choose (- l )A = 1. The above is discussed 
in Wigner (1965). In the case of 0*, as we have seen, we can still define evenness and 
oddness but a representation can be both-which it is depends on which part of 
raOra it arose from. 

We can define a 1-jm symbol (A)", connecting a representation with its complex 
conjugate. The analogous quantity in the rotation group is (- l>'-"s(m - m) in the 
standard basis. For O* this is (- l)U(ACm)S(m - m'), where U is a function defined by 
Harnung (1973) who gives a standard base for this group. We can use this symbol to 
raise and lower indices 

as in, for example, Wigner (1965, equation (loa)). The 1-jm symbol acts as a kind of 
metric. The bar in (2.2) and elsewhere denotes complex conjugation. For example in 
the rotation group (2.2) becomes 

j 2  j 3  ) F(-l)il-ml il 12 

m2 m3 (-ml mz m3 

In terms of the 3-jm symbols (2.1) we can couple tensors together 

where [A3] means the dimensionality of A3 and (-l)'^, is the phase of the 1-jm 
symbol which is defined from the (- 1)^ defined for each representation and does not 
depend on the new factor needed for 'Tz. (The phase is (- l)2A3 for O* because 
(- l)U(ZA) = (- 1)ZA.) 

6-j symbols are defined in the usual way as a sum of four 3-jm symbols (Butler 
1975, equation (9.6)). We use the following notation here: 

In simply reducible groups and in O* these are real. We note that the theory for the 
cubic group has been worked out by Griffith (1960 and 1962). In order to enable the 
reader to keep track of where representations in expressions originate from, we use 
the convention laid out in table 2. In the text we use greek letters for representations 
carried by vibrational modes as is conventional. We now show how we can generate 
various continuous groups using electronic operators defined on a single manifold. 

3. Irreducible operators defined on a single electronic manifold 

In the case of simple Jahn-Teller systems we have electronic states belonging to a 
single irreducible representation r of the symmetry group. For instance E, Tl, T2 or 
ra of the cubic double group. On the r-manifold we can define a complete operator 
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Table 2. Labelling convention for irreducible representations used in this paper. Multi- 
plicity labels are always r's. 

Irreducible Component Symbol (including where dashed) 
representation label reserved for 
label 
~ ~ ~~ 

r i, i, k The electronic state in the system 
A 4 s Operators generating various groups. Usually 

means the label belongs to the odd operators 
generating the group of invariance in electronic 
or vibrational space 

E 1, s The even irreducible representations occurring 
in the Jahn-Teller effect 

basis that transforms irreducibly under the group by 

The definition and the following theory is an extension of the SU(2) case dealt with by 
Judd (1963, pp 101-6). AGTOI' and therefore is integral ((-l)'*= 1) and 
consequently the rA's can be divided into even and odd operators. 

Using the same analysis as Judd we can show that, for a simply reducible group, 

[ V:, V;] = 1 ([A][A'][A''])''*(- 1)2r+A" 
A"f" 

This is the generalisation of equation (5.14) of Judd (1963). It follows from definition 
(3.1) together with the relation between the sum of three 3-jm symbols and the 6- j  
and a 3-jm (Butler 1975, equation (9.12)). Note that we can drop the multiplicity 
indices here. The same analysis can be followed in the theory of Harnung (1973) 
giving, for O* 

[Vi^, V::*'] = 1 ([A][A'][A"])'"(- 1)2r+fl((- f ( r  A)f ( r ' A') - f (  r " A")) 
r"A"r" 

( A  A' t" ) l [  A A' A"} vr,,w 
1" . 

t t i  A" r r r lrr,rfr 
(3.3) 

The 1 enters because we are certainly inside the cubic group when we talk of A c TOT 
an integer representation. The equation giving the sum of three 3-jm symbols is in this 
case equation (45) of Harnung (1973). f (rA) is defined as 1 unless we are talking of 
rI'=fT2 of O* in which case it is - 1. This replaces the factor of (- l)q(r8r8Ar) of 
Harnung (1973). Clearly we can use (3.3) in place of (3.2) for simply reducible 
groups- we have redundant labels but that will not do any harm. 

Now (3.2) and (3.3) imply that the operators are closed under commutation and 
therefore generate a group. Near the identity an element of this group would be 
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If the 6arA-f are arbitrary the group is GL(n), where n = [r]. If we require that the 
transformation (3.4) preserves orthonormality, to first order, then we must have 

(3.5) reduces to 

Sa,r + (- 1)'SUJ --f = 0 

in the case of the rotation group (Judd 1963, equation (5.15)). In this case (3.4) defines 
the elements near the identity of U(n) .  If we drop the totally symmetric A I  which 
generates an invariant subgroup then, as in the rotation group case, we have removed 
an element that merely changes the phase of a state and we have a group SU(n). We 
note from (3.2) that in the simply reducible case the odd operators ((- l )A = -1) are 
closed under commutation themselves. In the same case of O* this statement is still 
true with f T ~  included among the odd operators although (- l)T2 = 1. For simply 
reducible groups, by considering bilinear forms made from wavefunctions as in Judd 
(1963), we find that if r is an integral representation then the odd operators generate 
SO([r]) and if r is half-integral then they generate the sympletic group of order [r] ,  
Sp([T]). In the O* rs case the odd operators (including fT2) are linear combinations of 
odd operators in SU(2) and therefore generate the same group-Sp(4). 

Further subgroups may also be generated by subsets of these operators. Still 
considering 0*, in addition to VYT1 generating S0(3), VYT1 -2VfT1 also does as 
mentioned by Judd (1976, § 5) .  If one writes out the commutator relations (3.3) for 
these operators using the standard basis of Harnung (1973) (p= p, s = f )  one will see 
that this is so. More generally one can look for all operators of the above form that 
generate SO(3). One finds one more exists VyT1 +$V:'l. There are no more and in 
particular V:'l alone is insufficient. The various ways of generating SU(2) are 
important for the rsOE and rsOr2 cases that we consider in 0 5 .  We are now in a 
position to tabulate the irreducible representations that the above tensors belong to 
and the groups they generate in the cubic Jahn-Teller cases (table 3). 

Later we shall need the expression for an adjoint operator to (3.1). This is 

(3.6) 

Thus the operators are almost self-adjoint and (( - l)Af(rA))1'2V~A are. Again the f 
factor merely puts fT2 on the same basis as odd operators. (It is odd because it is in the 
symmetric product but it has (- 1)T2 = 1, the f factor rectifies this). Now we consider 
the effect of the generators of our groups on the Jahn-Teller coupling Hamiltonian 
HJT. 

4. Invariances of equal coupling models 

We define an equal coupling Jahn-Teller system as one in which all representations 
in r Or except the totally symmetric one are included equally. In this case the set of 
all odd electronic operators (which we know generate a group from § 3) transform 
the even operators involved in the effect among themselves. This is clear from (3.3). 
We now show that the effect of an infinitesimal element of the above group can 
be reversed by the same type of operation in vibrational space. The group in 
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Table 3. Continuous groups that can be generated by electronic irreducible tensor 
operators in cubic Jahn-Teller systems. 

Electronic state Tensors and groups 

E E 

l 
~~ ~ ~~~ 

SU(2) = so (3 )  

GL(2) or U(2) 

GL(3) or U(3) 

1 Sp(4) 3 so(5) I 
I SU(4) I 

GL(4) or U(4) 

question is always found to be a rotational subgroup of the rotation group under which 
the harmonic oscillator part of the Hamiltonian is invariant. Now the coupling part of 
the Hamiltonian can be written, for a simply reducible group, as 

where 0:' is a mode coordinate chosen irreducibly. For O* the corresponding 
expression is 

r' = d only if we are are talking about a Ts state. The function U is defined by Harnung 
(1973) (see above equation (2.2)). These equal coupling systems include 
r80~072, T0~072 and EO€.  

First we consider the case of a simply reducible group. We rotate HJT given by 
(4.1) in electronic space using S, of (3.4) with A restricted to being odd. To do this we 
need the adjoint of S, which is given, using (3.6) together with (3.5), by 
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Then we can perform our electronic rotation using (3.4) and (4.3) to get to first order 

This is just a transformed version of Hm because we included all the even represen- 
tations in rOr in (4.1). Now (3 .2 )  gives the commutator in (4.4) as a sum of tensor 
operators V?". We relabel the summation indices so that we have the coefficient of 
Vf'QF' in both parts of this sum. This results in a useful expression because of the 
equal coupling. If we had unequal coupling the two sums in the result would have had 
different coupling constants in front of them. After some rearranging to take (E)tt out 
of the second part of the sum we obtain, 

SLHJTS, = 1 (EI)tt,Vf'dF', 
E'n' 

(4.5) 

where 

(4.6) 
Thus the rotation in electronic space defines a transformation in vibrational space. 

(3 .2 )  and (4.1) in which case we obtain, 
We can proceed in exactly the same way for O* using (3.3) and (4.2) in place of 

where 

(4.7) 

(4.8) 

where recall 
- 

(- l)u(E'-f')a(tl - t f )  

and hence 

Note the similarity between (4.6) and (4.8). 
We now sketch the proof that we have thus generated the same group in Q-space 

as we did in electronic space. We will use simply reducible group notation although 
the argument works for O* equally. (4.6) defines the infinitesimal elements of a group 
acting on Q-space. These transformations are generated by operators defined as 
follows 

] ( zl, 7')  Q?". 
A E" E' 
r r  r XrQ:' = 1 (- l)"([A][E"][E'])'/' ( 

E t "  
(4.9) 
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In terms of these operators (4.6) is 

0:' =(l+c 2 8 U ~ & ; ) Q f ' .  (4.10) 

We note that by using (3.5) and manipulating 3-jm symbols we can show that to first 
order in the SaAp 

As 

(4.11) 

and equally for O*. As the determinant of the matrix in (4.10) is one this shows that 
(4.6) is a special unitary transformation. By operating on the left of (4.9) with X:' we 
can see that the X's are closed under commutation with commutation relations 

This shows that we have generated a subgroup of the special unitary group defined on 
Q-space. As (4.12) is the same as that obtained for the electronic operators (3.2)' the 
operators (4.9) generate the same group. We note the following fact used in the proof 
of (4.12) for reference: 

(4.13) 

Thus we have shown that HJT is invariant under the joint operation of Sa on the 
electronic space and the inverse of (4.10) in Q-space (as shown by (4.6) or (4.7) for 
O*). The groups of invariance are shown in table 4. We have underlined the matching 
ones giving the results noted in table 1 for equally coupled systems. In the next section 
we deal with the cases where some of the even representations are neglected. 

Table 4. The matching of electronic and vibrational groups for equally coupled systems. 

Equally coupled Electronic Q-group 
Jahn-Teller groups 
system 

E O €  so12) so(2) 

r* 0 E El 7 2  Sp(4)=s0(5) so(5) 
T @ c @ T ~  so(3) SO(5) so(3) 

5. Altering the number of even representations included in the Jahn-Teller effect 

Another type of Jahn-Teller system that we deal with is where only one even mode is 
coupled. Examples are T O T ~ ,  TOE, r 8 0 ~ 2  and TsOe. The general method here is to 
generate a group which transforms the even operator components among themselves 
from a subset of the odd operators in electronic space. If we have, as we do in the r8 
case, more than one operator belonging to the same representation then we can 
choose a linear combination so as to 'diagonalise the commutator'. By this we mean 
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choose a linear combination which when commuted with the even operator does not 
give another even operator in TOT. In the examples mentioned above the following 
happens. 

5.1. TO72 and TOE 
The only odd operator in TOT is TI. As TIOTZ=AZ@E@TI@TZ and TlOE= 
T I @  Tz commuting one even operator with a Tl operator necessarily introduces the 
other. Thus we have no subset to use and we have only one odd operator and are thus 
unable to diagonalise. Hence, there is no group higher than 0 under which TOr2 and 
TOE are invariant. 

5.2. r80T2 
Here we can use a subset to generate S O ( 3 j t h e  two TI operators (see table 3). As 
shown by Judd (1976) we can produce a linear combination of the two that demon- 
strates the SO(3) invariance of rOT2 as first seen by Moffitt and Thorson (1957). 
This combination is, 

Y,T1 5 (VYT1 -2V:T1)/45 (5.1) 

as mentioned in the discussion above (3.6). Using the commutation relations (3.3) 
together with tables of O* 6-j symbols we find that 

Thus the YT1's only give dTz operators when commuted with dT2 operators. If we use 
(5 .2 )  to enable us to commute Y? with HJT which has the same form as (4 .2 )  with 
r'E' = dT2 only, then we find 

where 

(5.4) defines generators X ?  in vibrational space which can be used to reverse the 
effect of YT' in the same way as (4.9) were used in 9 4. One can insert the values of 
the 3-jm symbols in (5.4) given in Harnung (1973) and thus show that 

[X$,  x? ] =xF, 
[X$, X T i ]  = -xF, 

and 

[XTi, XF ] = x$ 
(5 .5 )  

and hence that they generate SO(3). 

the same manner as we did in the equal coupling case. 
Thus we can reverse SO(3) rotations in electronic space by Q-space rotations in 
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5.3. r8OE 

Clearly as r 8 0 ~ 0 ~ 2  and are invariant under SO(3) so is rgOe. Indeed the 
YT’ defined by (5.1) provide the electronic generators required. In fact they commute 
with the HJT for rgOE, this feature being responsible for the simplicity of this system. 

5.4. The breathing mode 

We remark in passing that adding the a1 mode should make no difference to the 
invariance properties-it merely makes the Q-space group ‘larger’ and we now always 
have to take a subgroup of it. The a1 mode does not add to the electronic space and so 
we cannot get a ‘larger’ group in that space. For example there is no way that 
I?80a10E072 is going to be invariant under SO(6) which is not contained in GL(4), 
as was noted by Judd (1976). 

6. Conclusion 

We have set up an algebra generating continuous groups in a single electronic 
manifold r where f belongs to any simply reducible group or to the cubic double 
group (O*). This is a generalisation of the corresponding theory for the rotation group 
as set out by Judd (1963). We have shown that if we can generate a rotation group in 
this manner which transforms the even electronic operators of the Jahn-Teller effect 
among themselves then we have a continuous group invariance. This we have shown 
by demonstrating how one may reverse a rotation in electronic space by one in 
vibrational space. These ideas should extend readily to simple non-simply reducible 
groups as the glimpse into that world provided by the O* case shows. It would also be 
of interest to extend these ideas to the cases where the electronic manifold is reducible 
as in (SOP)OTlu for instance. 

Acknowledgments 

The author is indebted to Professor H Thomas for a discussion which led to the 
formulation of the theory presented here. It is a pleasure to acknowledge the guidance 
of Dr M C M O’Brien. In addition, the author is extremely grateful to Dr S E Harnung 
for the use of tables of O* 6-j symbols. The author is also grateful to the Science 
Research Council for financial support. 

References 

Butler P H 1975 Phil. Trans. R. Soc. A 277 545-85 
Butler P H and Wybourne B G 1976 Inf. J. Quant. Chem. 10 581-9 
Griffith J S 1960 Molec. Phys. 3 285-97,457-75 
_. 1962 The Irreducible Tensor Method for Molecular Symmetry Groups (Englewood Cliffs, NJ: Prentice- 

Harnung S E 1973 Molec. Phys. 26 473-502 
Judd B R 1963 Operator Techniques in Atomic Specfroscopy (New York: McGraw-Hill) 
- 1974 Can. J. Phys. 52 999-1044 
- 1976 J. Physique Suppl. C to be published 

Hall) 



Invariances of Jahn-Teller systems 1055 

Moffit W and Thorson W 1957 Phys. Rev. 108 1251-5 
O'Brien M C M 1971 J. Phys. C: Solid Sr. Phys. 4 2524-36 
- 1976 J. Phys. C: Solid Sr. Phys. 9 3153-63 
Pooler D R and O'Brien M C M 1977 J. Phys. C: Solid St. Phys. 10 3769-91 
Wigner E P 1965 Quantum Theory of Angular Momentum eds L C Biedenharn and H Van Dam (New 

York: Academic) pp 87-133 


